Chapter 4 : दो चरों वाले रैखिक समीकरण


गणित कक्षा 9 के अध्याय 4 में दो चरों वाले रैखिक समीकरणों के मुख्य तत्वों पर ध्यान केंद्रित किया जाता है। इसमें रैखिक समीकरण के महत्व, उसके विभिन्न तरीकों से समाधान का वर्णन किया गया है। ये सभी अवधारणाएँ परीक्षा की दृष्टि से अत्यंत महत्वपूर्ण हैं।

  • अपना कुल स्कोर जानने के लिए अंतिम प्रश्न के नीचे एक बटन दिया गया है, उसे दबाएं।
  • कोई ऋणात्मक मार्किंग नहीं है।

2687

1. यदि किसी रैखिक समीकरण के हल $(-2,2),(0,0)$ और $(2,-2)$ हैं, तो इसका रूप होता है

2694

2. $(a,-a)$ रूप का बिंदु सदैव रेखा पर स्थित होता है

2684

3. $x$-अक्ष की समीकरण का रूप है

2690

4. रैखिक समीकरण $y=x$ का आलेख निम्नलिखित बिंदु से होकर जाता है

2681

5. समीकरण $x=7$ को दो चरों में इस प्रकार लिखा जा सकता है

2693

6. $(a, a)$ रूप का बिंदु सदैव स्थित होता है

2678

7. यदि $(2,0)$ रैखिक समीकरण $2 x+3 y=k$ का एक हल है, तो $k$ का मान है

2674

8. दो चरों में रैखिक समीकरण $a x+b y+c=0$ के रूप की होती है, जहाँ

2680

9. रैखिक समीकरण $2 x+3 y=6$ का आलेख $y$-अक्ष को निम्नलिखित में से किस बिंदु पर काटता है

2686

10. $x=5, y=2$ निम्नलिखित रैखिक समीकरण का एक हल है

2673

11. रैखिक समीकरण $3 x-y=x-1$

2689

12. रैखिक समीकरण $2 x+3 y=6$ का आलेख एक रेखा है जो $x$-अक्ष को निम्नलिखित बिंदु पर मिलती है

2691

13. यदि हम किसी रैखिक समीकरण को एक शून्येतर संख्या से गुणा करें या भाग दें तो उस रैखिक समीकरण का हल

2692

14. $x=1$ और $y=2$ द्वारा $x$ और $y$ में कितनी रैखिक समीकरण संतुष्ट होती हैं?

2675

15. y$-अक्ष पर स्थिति कोई भी बिंदु निम्नलिखित रूप का होता है:

महत्वपूर्ण परिभाषाएँ और नियम

समीकरण:
एक समीकरण ऐसा कथन है जिसमें एक व्यंजक दूसरे व्यंजक के बराबर होता है।

दो चरों वाले रैखिक समीकरण
$a x+b y+c=0$, के रूप की समीकरण, जहाँ $a, b$ और $c$ वास्तविक संख्याएँ हैं, ताकि $a \neq 0$ और $b \neq 0$ हो, दो चरों में एक रैखिक समीकरण कहलाती है।

दो चरों वाले रैखिक समीकरण का हल :
समीकरण के हल ज्ञात करने की प्रक्रिया समीकरण को हल करना कहलाती है।

किसी रैखिक समीकरण के हल पर कोई प्रभाव नहीं पड़ता, जब
(i) समीकरण के दोनों पक्षों में एक ही संख्या जोड़ी जाए (या उनमें से एक ही संख्या घटाई जाए)।
(ii) समीकरण के दोनों पक्षों को एक ही शून्येतर संख्या से गुणा किया (या भाग दिया) जाए।
साथ ही, दो चरों वाली एक रैखिक समीकरण के अपरिमित रूप से अनेक हल होते हैं।

समीकरण का ग्राफ:
दो चरों वाली प्रत्येक रैखिक समीकरण का आलेख एक सरल रेखा होता है तथा इस आलेख (सरल रेखा) पर स्थित प्रत्येक बिंदु उस रैखिक समीकरण का एक हल निरूपित करता है। इस प्रकार, रैखिक समीकरण के प्रत्येक हल को समीकरण के आलेख पर एक अद्वितीय बिंदु द्वारा निरूपित कर सकते हैं।

$x=a$ और $y=a$ के आलेख क्रमशः $y$-अक्ष और $x$-अक्ष के समांतर रेखाएँ हैं।

समाधान विधियाँ:
दो चरों वाले रैखिक समीकरणों को समाधान करने के विभिन्न तरीके हैं जैसे:

  • ग्राफिकल विधि: समीकरण का ग्राफ बनाकर रेखाओं का अंतर-निर्धारित बिंदु (Intersection Point) निकाला जाता है।
  • प्रतिस्थापन विधि: एक समीकरण को दूसरे समीकरण में प्रतिस्थापित करके समाधान निकाला जाता है।
  • संयोग विधि: दोनों समीकरणों को जोड़कर और घटाकर समाधान निकाला जाता है।

एप्लिकेशन:
दो चरों वाले रैखिक समीकरणों का प्रयोग कई वास्तविक जीवन की समस्याओं का समाधान करने में किया जाता है, जैसे बजट प्रबंधन, वित्तीय रिपोर्ट, और अन्य गणनाएँ।

निष्कर्ष

कक्षा 9 गणित का अध्याय 4: दो चरों वाले रैखिक समीकरण विद्यार्थियों को रैखिक समीकरणों की बुनियादी अवधारणाएँ सिखाता है। यह अध्याय सभी महत्वपूर्ण प्रश्न और समाधान विधियों का समावेश करता है, जो परीक्षा की तैयारी में मददगार है।