गणित कक्षा 6: अध्याय 3


ऑनलाइन क्विज और MCQs

परीक्षा की तैयारी के लिए हमने इस अध्याय पर आधारित बहुविकल्पीय प्रश्नों (MCQs) को क्विज़ के रूप में तैयार किया है। नीचे दिए गए लिंक पर क्लिक करके आप इसे हल कर सकते हैं:

कक्षा 6 गणित के अध्याय 3 संख्याओं के साथ खेलना पर आधारित परीक्षापयोगी बहुविकल्पीय प्रश्न:

  • गुणनखंडन और अभाज्य संख्याएँ
  • संख्याओं की विभाज्यता की जांच
  • HCF और LCM

2539

1. निम्न कथनों में कौन - सा सत्य नहीं है

2538

2. 16 से 80 तथा 90 से 100 के बीच पड़ने वाली अभाज्य संख्याओं का योग है

2512

3. 36 के गुणनखंडों की संख्या है -

2537

4. 58 तथा 80 के बीच सम संख्याओं की संख्या है -

2549

5. निम्न संख्याओं में से कौन-सी संख्या 11 से विभाज्य है?

2541

6. 5 अंकों की सबसे छोटी संख्या के विभिन्न अभाज्य गुणनखंडों की संख्या है -

2545

7. 1729 के अभाज्य गुणनखंडों का योग है

2540

8. 4 अंकों की सबसे बड़ी संख्या के विभिन्न अभाज्य गुणनखंडों की संख्या है

2546

9. संख्या 1 को छोड़कर किसी विषम संख्या की पूर्ववर्ती तथा परवर्ती संख्याओं के गुणनफल को विभाजित करने वाली सबसे बड़ी संख्या है-

2542

10. यदि संख्या 7254* 98 संख्या 22 से विभाज्य है तब * के स्थान पर अंक होगा -

2543

11. कोई दो क्रमिक विषम संख्याओं के योग को विभाज्य करने वाली बड़ी से बड़ी संख्या है -

2547

12. 75, 60 तथा 105 के सार्वअभाज्य गुणनखंडों की संख्या है

2551

13. दो संख्याओं का ल. स. 180 है, तो निम्न में से कौन सी संख्या उन संख्याओं का म. स. नहीं हो सकती है -

2513

14. 3, 4 तथा 9 के पहले तीन सार्वगुणनखंडों का योगफल है

2532

15. बिंदु (.) पैटर्न का प्रयोग कर, निम्न में से कौन - सी संख्या, एक रेखा, एक त्रिभुज और एक आयत तीनों रूपों में व्यवस्थित की ( दर्शाई) जा सकती है

अध्याय 3 का संक्षिप्त पुनरावलोकन

कक्षा 6 गणित का अध्याय 3 संख्याओं के साथ खेलना विद्यार्थियों को संख्याओं और उनके गुणधर्मों की समझ विकसित करने में मदद करता है। इस अध्याय में मुख्यतः निम्नलिखित टॉपिक्स शामिल हैं:

1. गुणनखंडन

गुणनखंडन का उपयोग संख्याओं को उनके कारकों में विभाजित करने में होता है।

2. भाज्य और अभाज्य संख्याएँ

भाज्य संख्याएँ वे हैं जो अन्य संख्याओं से विभाजित हो सकती हैं। अभाज्य संख्याएँ केवल 1 और स्वयं से विभाजित होती हैं।

3. HCF और LCM

सर्वाधिक सामान्य भाजक (HCF) और न्यूनतम सामान्य गुणज (LCM) के गणना तरीकों को समझाया गया है।

4. विभाज्यता की जांच

संख्याओं को विभाज्य बनाने वाले नियमों का अध्ययन।

5. सह-अभाज्य संख्याएँ

सह-अभाज्य संख्याएँ वे हैं जिनका HCF केवल 1 होता है।